产品详情
  • 产品名称: PCE11 (PFFBT4T-2OD)

  • 产品型号: PCE11 (PFFBT4T-2OD)
  • 产品厂商:Ossila
  • 产品价格:0
  • 折扣价格:0
  • 产品文档:
你添加了1件商品 查看购物车
简单介绍:
Polymer PCE11 was targeted by reacting 4,7-bis(5-bromo-4-(2-octyldodecyl)thiophen-2-yl)-5,6-difluorobenzo[c][1,2,5]-thiadiazole with 2,5-bis(trimethylstannyl)thieno[3,2-b]thiophene engaging Stille Coupling reaction.
详情介绍:

General Information

Full name Poly[(5,6-difluoro-2,1,3-benzothiadiazol-4,7-diyl)-alt-(3,3’’’-di(2-octyldodecyl)-2,2’;5’,2’’;5’’,2’’’-quaterthiophen-5,5’’’-diyl)]
Synonyms PffBT4T-2OD
Chemical formula (C62H88F2N2S5)n
CAS number 1644164-62-4
HOMO / LUMO HOMO = -5.34 eV, LUMO = -3.69 eV [1]
Solubility/processing solvents Dichlorobenzene or Chlorobenzene+dichlorobenzene (1:1 v/v) at elevated temperature ca. 110 °C
Classification / Family Benzothiadiazole, Fluorinated benzothiadiazole, Heterocyclic five-membered ring, Organic semiconducting materials, Low band gap polymers, Organic Photovoltaics, Polymer Solar Cells

 

 Batch details

Batch number MW MN PDI
M301 117,490 54,900 2.14
M302 172,033 83,008 2.07
M303 112,707 55,674 2.02

 

 

pce11, PffBT4T-2OD, 1644164-62-4 chemical structure
Chemical structure and product image of PCE11 (PFFBT4T-2OD); Chemical formula: (C62H88F2N2S5)n.

 

Applications

PffBT4T-2OD (PCE11) is a low band-gap (1.65 eV) semiconducting polymer for organic photovoltaics (OPVs), which has reached power conversion efficiencies (PCEs) approaching 11% [1]. These efficiencies are a result of the high crystallinity of the polymer, providing excellent hole transport mobilities on the order of 10-2 cm2V-1s-1, and the ability to use a thick active layer, resulting in improved light absorption.

The size and position of the alkyl chains of PffBT4T-2OD are critical to its temperature dependant aggregation properties, enabling control over the aggregation and crystallisation of the polymer to produce an efficient donor:acceptor film morphology.

Polymer PCE11 was targeted by reacting 4,7-bis(5-bromo-4-(2-octyldodecyl)thiophen-2-yl)-5,6-difluorobenzo[c][1,2,5]-thiadiazole with 2,5-bis(trimethylstannyl)thieno[3,2-b]thiophene engaging Stille Coupling reaction.

 pce11-pffbt4t-2od-synthesis 4,7-bis(5-bromo-4-(2-octyldodecyl)thiophen-2-yl)-5,6-difluorobenzo[c][1,2,5]-thiadiazole with 2,5-bis(trimethylstannyl)thieno[3,2-b]thiophene
PCE11 (PffBT4T-2OD) synthesis with 4,7-bis(5-bromo-4-(2-octyldodecyl)thiophen-2-yl)-5,6-difluorobenzo[c][1,2,5]-thiadiazole with 2,5-bis(trimethylstannyl)thieno[3,2-b]thiophene as starting materials engaging Stille Coupling reaction.

 

Usage Details

The structure of the high-performance (10 - 11%) devices was:

ITO / ZnO / PffBT4T-2OD:PC70BM (200 – 300 nm) / MoO3 or V2O5 (20 nm) / Al (100 nm)

PffBT4T-2OD:PC70BM solution details:

  • Blend ratio: 1:1.2,
  • Polymer concentration: 9 mg/ml,
  • Solvent: 1:1 blend of chlorobenzene and dichlorobenzene,
  • Additive: 3% diiodooctane,
  • Heating: 85°C for dissolution,

It is important to note that this solution (and the substrate being deposited onto) must be heated for spin casting, with the ideal temperature being 60 – 80°C. It is reported that a solution and substrate pre-heating temperature of 110°C should be used to allow for cooling that will occur before deposition.

 

Literature and Reviews

  1. Aggregation and morphology control enables multiple cases of high-efficiency polymer solar cells, Y. Liu, et al., Nat. Comm., 5, 5293 (2014)
  2. High-efficiency non-fullerene organic solar cells enabled by a difluorobenzothiadiazole-based donor polymer combined with a properly matched small molecule acceptor, J. Zhao et al., Energy Environ. Sci., 8, 520-525 (2015)

 

在线客服